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A Trace-Driven Simulation Study of Dynamic Load
Balancing

Songnian Zhou

Computer Systems Research Group
Computer Science Division, EECS
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ABSTRACT

““A trace-driven simulation study of dynamic load balancing in homogeneous
distributed systems sypporting broadcasting is presented. We use inform \tion
sbout job CPU and 1/O demands collected from a production system as wpuat to
a simulation model that includes a representative CPU scheduling policy and con-
siders the message exchange and job transfer costs explicitly. Sevenm load balsac-
ing algorithma are simulated and their performances compared. We find that
load balancing is capable of significantly reducing the mean and standard devis-
tion of job response times, especially under heavy system load, snd for jobs with
high resource demands. The performances of all hosts, even those originally with
light loads, are generally improved by load balancing. The reduction of the mean

response time increases with the number of hosts, but levels of at around 30
$ hosts. Algorithms based on periodic or non-periodic load information exchange
1 provide similar performance, sad, among the periodic policies, the algorithms that
use a distinguished sgent to collect and distribute load information cut down the
overhead and scale better. They are also the most appropriate algorithms for
sdaptive load balancing, which has the potentisl of offering mear-optimal perfor-
mance under 3 wide spectrum of system configurations and load conditions. Sys-
tem instability in the form of host overloading is possible when the load informa-
tion is not up-to-date and the system is under heavy load; however, this aundesir-
able phenomenon can be alleviated by simple measures. Load balancing is still
L’ very effective even when up to hall of the eligible jobs have to be executed

locally. The trace-driven simulation approach to the study of load bslancing is
] found to be efficient and effective, and is recommended for use before implemen-
tation eflorts.

1 This work was partially sponsored by the Defense Advanced Research Projects Agency (DoD), Arps Order No.
4871, monitored by Space and Naval Warfare Systems Comynaad uader Contract No. NOG0SS-84-C-0089, and by
the National Science Foundation under grant DMC-8503578. The views snd coaclusions contalned ia this docu-
ment are those of the author and should not be interpreted as representing official policies, either expresmd or
implied, of the Defense Research Projects Agency or of the US Governmeat.

NA
. 1]
o 4
v
. d
sbuity Codes 1.
- e e e e ey
wail acdor ‘
[}
|

Speciat

N S




Roabe

1. Introductlon

Distributed computer systems are becoming increasingly available because of the drop in
hardware costs and advances in computer networking technologies. An important advaatage of
distributed systems is the potential of resource sharing to provide the users with a rich collection
of resources that are usually unavailable or highly contended for in stand-alone systems. Exam-
ples of sharable resources are files, computing power, and printers. It is frequently observed that,
in a computing environment with 2 number of hosts connected by networks, there is a high proba-
bility that some of the hosts are heavily loaded, while others are almost idle. Even if the hosts
are evenly loaded over long periods, such as half an hour or more, the instantaneous loads are
likely to be fluctuating constantly. t This suggests that performance gains may be achieved by
transferring jobs from the currently heavily loaded hosts to the lightly loaded ones. This form of
computing power sharing, with the purpose of improving the performance of a distributed system
by redistributing the workload among the available hosts, is commoaly called load balancing, or
load sharing. $

The problem of load balancing has been studied using a number of different approaches over
the years. The early works mainly concentrated on static load balancing {3, 18, 19, 22]. In those
studies, job transfer decisions are made deterministically or probabilistically without taking into
consideration the current state of the system. The problem of program module assignment has
also been studied in a number of forms, with the basic assumption that the program concerned
can be partitioned into a aumber of modules with known resource consumptions and inter-module
communication costs. Load balancing is formulated as a mathematical programming or network
flow problem, and solved by optimizing some performance index such as the average response
time or the resource utilizations.

Static load balancing is simple and effective when the workload can be sufficiently well
characterized beforehand, but it fails to adjust to the fluctuations in system load. In contrast,
dynamic load balancing® sttempts to balance the system load dynamically as jobs arrive.
Because of its genmerality and ability to respond to temporary system unbalances, dynamic load
balancing bas received increasing attention from the research commuaity (7, 8, 9, 12, 16, 17, 21].
Livny and Melman [17] showed, using simple queuing network models and simulation, that
dynamic load balancing can greatly improve average job response time. They also proposed a
number of implementable algorithms for load balancing. Eager et al. [0] carried the work further
by systematically studying s number of dynamic load balancing algorithms with different levels of
complexity. Their results confirmed the great potential of load balancing. They also claimed that
relatively simple algorithms can provide substantial performance improvements, while more com-
plicated algorithms are pot likely to offer much further improvement. Wang and Morris [21]

t Such obeervations, of course, are dependent on the system aad the spplications being run. For instance, in &
main-frame batch dats processing environment, the loads might be even over long petiods of time. 1n contrast,
however, in s workstation-rich environment, which is becorning more and more popular, the probability of 2 me-
jority of the stations being idle or almost idle is very bigh {20}.

$ The term load balancing has sometimes been used to imply the objective of equalising the loads of the hosts,
wheress load sharing simply means s redistribution of the worklosad. We will use the term load balancing in the
rest of this paper, but without the stroager connotation.

¢ Some suthors used the termy sdaptive lead belencing and dynamic load balascing interchangeably. We decid-
ed, however, 10 reserve the former for a particular form of load balancing to be described later in this paper.
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conducted a comprehensive study and pointed out that the choice of a load balancing a/gorithm is
a crucial design decision. They also proposed a performance metric called the Q-factor, and used
it to evaluate the quality of the algorithms. Lelsad aad Ott [16] performed an extensive study of
process behavior in the VAX/UNIX environment and evaluated the usefulness of initial process
assignment and process migration as forms of load balancing. A number of other researchers have
also considered process migration in their load balancing algorithms {1, 4. To limit the scope of
our study to a manageable level, however, we will not consider process migration in this paper.
Ptocess migration is also much more difficult to implement, and involves higher costs in most sys-
tems.

Although different authors make very different assumptions about system structures and
overhead costs, the main tools of study in dynamic load balancing have been queuing network
models and simulation with probabilistic assumptions about job arrivals and resource demands.
Unfortunately, a reasonably accurate analytic model for a real-world system with a load balancing
scheme of modest complexity can be very difficult to comstruct. Solving the models is even
harder. Consequently, many researchers are forced to make simplifying assumptions that are
often unrealistic, rendering the results of the studies subject to suspicion. For example, in order
to make the model tractable, the job interarrival time and the job execution time are often
assumed to be exponentially distributed. The utilizations of the hosts are sometimes assumed to
be the same, and the eflects of the system scale on load balancing performance are often ignored.
For similar reasons, the costs of exchanging load information and other types of costs associated
with load balancing are often ignored or grossly simplified. Simulation models driven by probabil-
ity distributions are capable of handling greater system complexity and thus solving a larger class
of problems, but it is still unclear how much error in the results is introduced by the distributional
assumptions made by the investigators.

To substantiate these criticisms, we traced s production VAX/UNIX® system for a number
of extended periods during working hours, and recorded the arrival times of the processest, as well
a8 their CPU and disk I/O demands. The distributions of these measurements are shown in Fig-
ures 1, 2 and 3, respectively. It can be seen that none of them follow an exponential pattern.
The inter-arrival time distribution is not very far from exponential, whereas the CPU and 1/0O
demand distributions are both highly skewed . Similar observations have been made by other
researchers |5, 6, 16).

In this paper, we study the problem of dynamic load balancing using an approach different
from those mentioned above. Job traces collected from s production system sre used to drive a
simulation program that implements a number of load balancing algorithms. In this way, we
eliminate the errors caused by assumptions about the workload. The costs of message exchanges
and job transfers are cousidered so that performaace comparisons between the algorithms can be
made on an equal basis. Two broad categories of algoritbms are commonly recognized. In source

® UNIX is » trademark of ATET Bell Laboratories.

t In s UNIX system, s job corresponds to s command line input by s user, and s number of precesese may be
crested (o earry out the job. We will not insist o this distinction in this paper, however.

$ For a job’s 1/O demand, both synchronous and asynchronous disk 1/O's are considered, while disk cache bits
are properly excluded.




mean = 2,581 seconds

std. dev. == 4.923 seconds
number of jobs == 273,346
total duration == 196 hours

exponential

) =l 10400~ S =P ereOogm ws o¢lsZ

104

[ U]

09 20 40 &0 60 MO 120 140 MO 185 WO
Interarvival Time (sesend)

Figure 1. Distribution of job inter-arrival times.

initiative algorithms, the hosts where jobs arrive take the initiative to transfer the jobs, whereas
in server initiative algorithms, hosts able and willing to receive transferred jobs go out to find
such jobs. A hoet may well be a source and a server at the same time. We concentrate on source
initiative algorithms in this paper.

(1)

@

3)

A load balaacing algorithm consists of a number of compoanents.

The information policy specifies the amount of losd and job information made available to
job placement decision maker{s), and the way by which the information is distributed. We
may require that the loads of all the boets in the system be available to the decision
maker(s). Alternatively, no or only partial information may be availsble. Periodic updates
may be used to distribute load information, or the information may be provided upon
request (demand-polling). A distinguished agest may be involved in the load information
distribution, or no such agent may exist.

The transfer policy determines the eligibility of a job for load balancing based on the job
and the loads of the bosts. It may not be desirable, for example, to transfer small jobs, and
some jobs may require specific resources available only on certain hosts, thus being unsuit-
able for consideration. )

The placement policy decides, for eligible jobs, the hosts to which the jobs should be
trapsferred. An attempt may be made to select the least loaded host in the system, or only
an acceptable host is sought so that less load information is needed. If no suitable host can
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Figure 2. Cumulative distribution of job CPU times (in seconds).

be found, the jobs will have to be processed locally.

The above three componeat policies of a load balancing algorithm are not isolated from each
other, but interact in various ways. For example, the load information available limits the possi-
ble transfer policies. Because of the large number of options for each component policy, it is
impossible to study all possible policy combinations in this paper. Instead, we shall concentrate
on the information policies and some of the related placement policies, while keeping the other
aspects of the scheme fixed. Specifically, we are interested in comparing the performances of the
algorithms using periodic updates and of those acquiring information on demand. For the periodic
policies, we want to evaluate the performance impact of a global agent that collects and distri-
butes load information of all the hosts in the system. We also waat to study the problem of ins-
tability caused by a number of hosts sending jobs all at the same time to a lightly loaded host,
thus making it overloaded. A number of representative load balancing algorithms are defined and
studied in detail. However, our objective is not to select the best algorithm, but rather, to study
the characteristics of various types of algorithms and the tradeoffs between conflicting require-
ments.

The important results from this study include the following:

. A load balancing scheme using any reasonable algorithm caa improve the job response times
by 30-60%, and make them much more predictable.
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. The mean response times of jobs on every host, even on those originally with light loads, are
reduced by load balancing.

) Periodic sad non-periodic information policies provide comparable performance.

® For the periodic information policies, the global algorithms impose less overhead on the sys-
tem thaa the distribated ones (typically half or less for systems with 20 or more hosts), and,
hence, cap support larger systems.

. Greater performance improvement can be gained by increasing the system size, but the
improvement levels off beyond a few tens of hosts, at which point it becomes more advanta-
geous to implement load balancing in clusters.

. Instability may occur when load information is stale and the system load is high, but it can
be alleviated by simple measures.

. Load balancing can still be highly eflective when up to half of the jobs that are otherwise eli-
gible for load balancing must be executed on their local hosts.

Our study also provides insights into the choice of a load balancing algorithm under different sys-
tem environments and load conditions.

In the pext section, we describe the system we simulate and the structure of the model. We
also discuss the load and performance indices we use. Section 3 describes the algorithms that we
studied in the simulation. The simulation results are presented in Section 4, along with a discus-
sion and comparison of the algorithms. Some concluding remarks are made in Section 5.




3. Experiment Design

2.1. The Job Trace

A distinguishing feature of our study is the use of job traces instead of probability distribu-
tions to describe the arrival times and resource demands of the jobs. We traced a production
VAX-11/780 system running Berkeley UNIX to collect job traces consisting of tuples of the for-
mat

< job arrival time, CPU time demaond, number of disk I/0's>.

Previous measurement studies conducted by the author [23] show that the CPU is the most con-
tended resource in the type of time-sharing systems from which the job traces are derived. There
is usually plenty of main memory, hence little paging and almost no forced process swapping
occur. The networking subsystem is not heavily loaded either. Therefore, we will consider only
CPU and disk 1/O in our model, while retaining confidence in the results of the simulation.

Heterogeneity, either architectural or configurational, complicates the load balancing prob-
lem greatly, and is a deviation from the primary concerns of this research. Therefore, we will
concentrate on homogeneous systems. In fact, to insure homogeneity and to ease the trace collec-
tion efforts, sessions of job traces were collected on the same host at different times to represent a
number of hosts connected by a network. + The selection of simulation session length is important
because the boundary eflects caused by jobs started before the session begins and by those fnish-
ing after the sessior ends may significantly aflect the accuracy of the results. On the other hand,
longer sessions involve greater eflorts in trace collection and simulation. We chose the length of
each session to be four hours. Typically, about 6000 processes are created on each host during
this period. Even so, some of the processes executing during a session are not included. Such
processes are mostly system services that are started at system boot time and run until the sys-
tem goes down, and a few very long batch jobs. Though small in number, they can represent a
significant portion of CPU time consumption. As a result, the simulated CPU utilizations during
the sessions are lower than in reality, typically by 5-15 percent.

2.2. Model Structure

The simulation model is of event-driven type [11], snd its structure is shown in Figure 4.
We adopt a foreground-background round-robin scheduling policy for the CPU. The time quan-
tum is 100 milliseconds, the same as that used in the Berkeley UNIX system from which the trace
was derived. After a job has accumuiated 500 milliseconds of CPU time, it is put into the back-
ground queue, which will be checked only if mo job is available in the foreground queue. Since
sbout 60-65% of the jobs have execution times below this threshold, they will not be sent to the
background queue, thus receiving priority service. While the CPU scheduling policies in computer
systems are usually more complicated, we feel that the above policy captures their essential
features, sad may be considered representative. Since the level of contention at the disks is usu-
ally low under normal operating conditions in the type of system we measured {23], we model

4 It i recognized thas, by 80 doing, the possible temporal correlations between the loads of the various hosts are
lost.
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Figure 4. Structure of system used in simulation.

them as infinite servers causing oaly processing delays, but no queuing delays. I/O operations are
assumed to be evenly spread throughout the execution of the job $, and each disk I/O is assumed
to take 30 milliseconds. A communication network permits message passing and job transfers
between the hosts. Since we are most interested in load balancing in local distributed systems, we
assume that the underlying network supports brosdcast (e.g., Ethernet). We also assume the
existence of a distributed file system so that the the costs of accessing the program and data files
are roughly the same for all of the hosts. As a result, the files do not have to be moved with the
jobs to be load balanced. This assumption will be increasingly appropriate for future systems
designed for distributed computing. Since our trace data is derived from a time-sharing system
without the support of a distributed file system, we are unable to simulate the contention at the
file servers, and we also do not have measurement data on remote file accesses. The cost of 30
milliseconds for an 1/O operation is therefore a rough approximation.

$ Recording the times of the 1/O operations during job execution would grestly complicate our trace collection
effort and the model construction and simulation, without providing significant benefit, in terms of model secu-
racy, since the disks are pot the points of contention.



2.3. Cost Assumptions

There are basically two types of overhead costs involved in load balancing. First, current
load indices of the hosts have to be computed and messages exchanged to make them known to
the decision makers. Secondly, placement decisions need to be made and jobs transferred between
the hosts. CPU time and network bandwidth are consumed for these purposes. The latter of
overhead also directly introduces extra delays in the jobs involved. (So is the former if load infor-
mation is acquired while the job to be balanced is waiting, as is the case with 3 number of aigo-
rithms to be studied.) It has been experimentally observed that, in most current installations, local
area networks, such as the Ethernet, usually have plenty of bandwidth, and the delays in the net-
work are small compared to the CPU cost of executing the communication protocols {15]. Conse-
quently, we only consider CPU time overbead in this study. We assume that message exchange
and job transfer have preemptive priority over job execution. Based on measurements from our
experimental implementations of load balancing on the VAX/UNIX and SUN/UNIX machines, we
assume that computing the current load and sending it out takes 20 milliseconds of CPU time,
while receiving load information and processing it takes 10 milliseconds. A job transfer is
assumed to take 100 milliseconds of CPU time for both the sending and the receiving host, and
causes 200 milliseconds delay to the job being tranpsferred. This assumption seems to be less criti-
cal thap that for message cost because the algorithms we study mainly differ in their information
policies; a change in job transfer cost is likely to change their performances by similar amounts.

It should be pointed out that the above cost assumptions are very approximate; the actual
costs in terms of the CPU times spent and the job delays introduced are highly sensitive to the
load conditions of the hosts involved and the network load. They are also dependent on the
implementation of the underlying system, as well as on the size of the message and on that of the
job.

2.4. Load and Performance Metrics

In order to compare the performances ol various load balancing algorithms, we need a
number of metrics. First, it is important to characterize the load on the whole system, as the per-
formance of load balancing schemes varies with the system load. We choose the average CPU
utilization of all the hosts over the entire session as the load level indicator since it represents the
level of contention for the most critical resources in the system. We are also interested in a load
indez that we can use to predict the response time of a job if that job is executed on a particular
host. Ferrari [11] pointed out, using mean value analysis, that a livesr combination of the
resource queue lengths in & computer system can be an excellent predictor of job response time,
with the coefficients being the estimated resource consumptions of the job. In a previous measure-
ment study [23], we found that the CPU queue length has a bigh correlation with the job response
time io 8 CPU-bound host, sad bence suggests itself as a good load index.

To measure and compare the eflectiveness of load balancing algorithms, we aeed to define a
performance indez. We choose the mean job response time because decreasing the job mponie
time is our primary objective of load balancing. However, this does not measure the variability of
the job response times. We will use the standard deviation of the response times of all the jobs to
complement the mesn response time.
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3. Load Balancing Algorithms

We studied seven algorithms that use different types of information policies and related
placement policies. For ease of comparison, we base the transfer policy of all the algorithms on
the local host load and job execution time thresholds. When the CPU queue length of a host is at
or below a threshold, all jobs arriving there are processed locally. Otherwise, all the jobs arriving
at that host and with execution times above a certain threshold are eligible for load balancing.
Although job execution times are difficult to predict, it is possible to classify the jobs into two
rough categories: ‘“big’’ jobs which are worth considering for load balancing, and ‘small’ jobs not
to be considered. Moreover, estimation errors can be easily tolerated, as long as they are not too
frequent. Our studies of jobs submitted over 30 days show that such a classification can be made
with a very high success rate simply by looking at the job names. For example, a text processing
job will almost certainly take over 1 second of CPU time, whereas a directory checking operation
is clearly not worth considering for load balancing. One result of this research is that the perfor-
mance of the load balancing algorithms is quite robust with regard to the job execution time
threshold (See Section 4.4).

The following algorithms were studied:
GLOBAL

Every T seconds, one of the hosts, designated as the load information center (LIC), receives
load updates {rom all the other hosts and assembles them into a load vector, which is then
broadcast to all the other hosts. If the load of a host is the same as that sent out the last
time, however, no update needs to be sent to the LIC. This applies to the next algorithm,
DISTED, as well.

The placement policy of the GLOBAL algorithm, as well as that of the next algorithm, is as
follows. The local version of the load vector is searched for 3 host with the shortest CPU
queue length, and, if the diflerence in CPU queue length between the local host and the
potential destination is at or above a given limit ! (usually 1 or 2), the job is sent there. If
there are several hosts with the same shortest queue length, which is often the case, the first
one is selected. This rule, together with a randomized starting point for the search, can
potentially alleviate the instability problem as we will discuss later.

DISTED

Instead of reporting the local load to a centralized LIC as in GLOBAL, each host broadcasts
its load periodically for the other bosts to update their locally maintained load vector.

CENTRAL

In the above two algorithms, placement decisions are made by each host using the local ver-
sion of the load vector. In the CENTRAL algorithm, there exists a central scheduler for all
the hosts. When a3 host decides that a job is eligible for load balancing, it sends a request to
the central scheduler, together with the curreat value of its load. The central scheduler
selects a bost with the shortest queue length and informs the originating host to send the job
there. The load vector on which the scheduler bases its decisions is updated using only the
load information sent by the hosts with the job requests.
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CENTEX
The same as CENTRAL except that, periodically, each host sends its local load to the LIC
(CENTtal with EXchange). This algorithm can be regarded as a hybrid of GLOBAL and
CENTRAL.

For the above four algorithms, the load vector used in the placement decision is updated by
increasing the load of the destination host by an adjustable constant (currently 1). All the algo-
rithms assume that the loads of all the hosts are known to the placement decision makers, with
some delay. The algorithms below use less system state information, and thus have smaller over-
head costs.

RANDOM

This algorithm uses minimum load information. When a job is found to be eligible for load

balancing, it is sent to a randomly selected host. The receiving host treats the transferred

job exactly as if it had arrived locally. To avoid the undesirable situation in which a job
bounces around indefinitely, we set a limit Ly such that the L,'th host receiving the job has
to process it no matter what its load is.

THRHLD

A number of hosts up to a limit L, are polled when an eligible job arrives, and the job is
transferred to the first host whose load is below a fixed threshold. If po such host is found,
the job is processed locally, When the message exchange cost is much lower than the job
transfer cost, this algorithm wins over RANDOM by avoiding costly job transfers.
LOWEST
This is similar to THRHLD except that, instead of using a threshold for the placement, a
fixed number of hosts are polled and the most lightly loaded bost is selected. Thus, when
message overhead is higher, a potentially better host may be selected than by THRHLD.
The last three algorithms above are identical to the ones studied by Eager et al. [9] How-
ever, we use a trace-driven simulation method to evaluate them, and we compare them to those
algorithms that use a load vector. The algorithms above make placement decisions on the basis
of various amounts of system state information. Since we consider the overhead coets of load
balancing explicitly, a direct assessment of the appropriate amount of load information for load
balancing can be made.
For comparison, we also implemented three boundary cases of load balsacing:
NolLB
No load balancing is attempted; all arriving jobe are processed locally.
NoCOST
This is the unrealizable ideal case in which the current CPU queue lengths of all the hosts
are known to the transfer decision makers at no cost (in terms of CPU time and job delay),
and the transfers of jobs are also assumed to be costless.
PartCOST

This is the partly-ideal case in which perfect load information is assumed to be known at no
cost, but job transfer costs are considered.

PPNy P W

R e S R . S8



-12-

The performance of all the algorithms can be expected to be between those of NoLB and
NoCOST.

There are a large number of potentially useful load balancing algorithms besides the ones
listed above. As we stated earlier, our primary concern in this paper is not the particular algo-
rithms to use, but rather the effects of different approaches to load information gathering and
placement decision making.

4. Simulation Results

Simulation runs with various system sizes and load levels were executed. To make the per-
formance comparisons between the algorithms meaningful, a number of simulation runs were con-
ducted for each algorithm with different adjustable parameter values (e.g., job threshold, load
exchange period), and the best response time was selected. In this way, the comparisons are
between the best achievable performances of dillerent algorithms, and it is hoped that they reveal
the qualities of the algorithms. The results of the simulation experiments are presented in the fol-
lowing sections,

4.1. Comparison of the Algorithms

Figure 5 shows the average response times of s system of 28 hosts under the load balancing
algorithms described above. Since job traces are used to drive the model, we cannot coatrol the
utilization of the system. However, it is essential to observe the performance of the algorithms
under various load conditions. We achieve this by multiplying the job interarrival times by a con-
stant factor. By varying the multiplication factor, we are sble to generate a number of points for
each algorithm. Although the job stream is aitered, the job characteristics (i.e., execution time,
number of I/O) remain the same. We feel that such a modification to the job stream is unlikely
to introduce significant errors in the results. ¢

The first observation in Figure 5 is that all the algorithms provide substantial performance
improvements over a wide range of system loads, compared to the NoLB case. In fact, response
times reasonably close to those of the NoCOST case are achievable. The higher the system load,
the greater the improvements. While we observed s greater-than-average improvement in the
mean tesponse time of big jobs (e.g., with execution times greater tham 1 second) the mean
response time of the small jobs does not sulfer as a result. Figure 5 also demonstrates clestly the
relative performances of the algorithms. The performance of CENTRAL is the worst of the
seven. This is mainly becawse the global scheduler relies only on the load information provided
with job scheduling requests. It is observed that the frequency of placement decision making for
each host is one per 5-20 seconds, when the job threshold is 0.5-1.0 second. At such loag inter-
vals, the loads of the hosts are likely to bave changed substantially. Consequently, a high percen-
tage of the global scheduler’s decisions are wrong.

In sharp coptrast, the CENTEX algorithm, which is the same as CENTRAL except that
load information is periodically reported to the LIC, provides the best performaace among the

thm:hdmmwmuipbm;'obmthwmbyubfm.ndbmd&mthbmlhm
et, they both alter the job characteristics and swem to introduce more changes to the workload thas the method
we used, thus making the comparison of performances under different workioed levels loss mesningful.
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Figure 5. Average response times under different load levels (28 Hosts).

seven. It has been widely assumed that, in distributed systems, centralized solutions are undesir-
able because they tend to create performance bottlenecks and single points of failure. Such a
view, however, may be too simplistic if unqualified. The best solution is environment and problem
dependent. For load balanciag, if the interprocessor communication is relatively efficient (such as
the case in this paper), and the system scale is limited (up to 50-100 hosts), the centralized
approach to load information distribution and job placement may be simple and efficient, as
demoustrated by Figures 5§ and 6. The costs of job placements is reduced for all the hosts except
the LIC, as they now only need to send local load information and placement requests to the LIC,
rather than maintaining system-wide foad information and performing placements themselves.
For the LIC, we observed that up to 35% of its CPU time may be spent for load balancing func-
tions supporting a system of 40 hosts. Although this is » high overbead for this bost, it is a small
price to pay for the whole system. In return, excellent placement decisions based on up-to-date
information are achieved. This explains why the performance of CENTEX is slightly better than
those of THRHLD and LOWEST, which only attempt to select a host from a small subset of the
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hosts. For many distributed applications, availability is crucial, hence a centralized solution is not
appropriate. This is not the case with load balancing, however. If the LIC goes down, some other
host can quickly detect the condition and take over its role. The loss of load information is not a
serious problem because load information becomes obsolete in a short while anyway. The brief
interval during which load balancing is unavailable should be easily tolerable because load balanc-
ing is not an essential system service such as the naming service; its absence should in o way
interfere with system operations. In fact, an implementation using essentially the CENTEX algo-
rithm has been reported to provide effective load balancing [13]. In that environment, inter-bost
communication is extremely fast, and the global scheduler is claimed to be able to process 1000
requests per second.

The comparison between the GLOBAL and DISTED algorithms is highly instructive. Since
they are the same, except for their information policies, the significant performance difference
reveals the advantages of using a global agent as a relay point for load information exchange.
Assume that there are N hosts in the system, and let the update period be T seconds, and the
cost of sending and receiving a message plus related processing be M,  and M,,,, respectively.
For GLOBAL, the overhead due to the load information exchanges is

_(N—l)xM..,.+M“
I

Cuc X 100%

for the LIC, and

for the other hosts. Except for the LIC, the message overhead is independent of the system size
N. In contrast, for the DISTED algorithm, the message overhead for every host is

X 100%

c-(N-l)XMm'i'M“
I

because, during each interval of duration T, every host has to process the messages broadcast by
every other host. t Compared to GLOBAL, we do not have a central point of failure and an extra
level of indirection in the distribution of load information in DISTED, but the overhead is higher
for every host, and grows linearly with the system size. Since the availability considerations are
not important, as discussed above, the GLOBAL algorithm appears more attractive than
DISTED.

One somewhat surprising result from Figure 5 is that the two drastically diflerent algo-
rithms, GLOBAL and LOWEST, provide almost identical response times under a wide range of
system loads. The GLOBAL algorithm uses more extensive system state information in an effort
to make optimal transfer decisions. To achieve this, load information is exchanged at a high fre-
quency, thus incurring high overbead. In the simulation runs, the value of T that provides the
best performance for GLOBAL is between 0.75 and 3 seconds. At such a high frequency, 1-3% of
the CPU time in every host is spent exchanging load information. The LOWEST algorithm does

4+ Due to the policy of not sending out the local load information ¥ it is the same 29 last time, the actual over-
besds of GLOBAL and DISTED are lower thaa presested bere, typically by 40-70%, but the order analyses here
are still valid.
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not attempt to select the globally “best’ host for job transfer, but rather only selects the least
loaded among a small group of randomly picked hosts. Although the time it takes to poll the
hosts directly increases the response time of the waiting job, more up-to-date load information is
used for job placement. A main reason GLOBAL is not able to perform better than LOWEST is
that there exists a fundamental contradiction between the need to frequently update the joad vec-
tors at each host and the low utilizations of the load vectors. If the exchange period is 1.0 second,
and the rate at which transfer decisions are made by a host is one job every 10 seconds, then 90%
of the load exchanges are wasted.

The above discussion seems to confirm the assertion made by Eager et al. [9] that more
complicated algorithms than THRHLD and LOWEST are not likely to provide substantially
better performance. In fact, the difference between LOWEST and the unrealistic NoCOST algo-
rithm is already quite small. However, we do not observe the significant improvement from RAN-
DOM to THRHLD, which was observed by Eager et al. This may be due to the fact that these
authors did not consider the message exchange costs explicitly in their study.

4.2. Effects of System Scale

Scalability is an important issue in load balancing. On the one hand, a larger pool of hosts
might improve the performance of load balancing. On the other hand, the overhead of load
balancing might grow with system size, and the management of the system becomes harder. The
average response times of the ten algorithms in systems coataining 7, 14, 21, 28, 35, 42, and 49
hosts are shown in Figure 6. To make the comparisons meaningful, the overall system utilizations
are selected to be within a narrow range (see the bost utilization numbers for the NoLB case at
the top of Figure 6), and the response times are normalized against that of NoLB.

The negative slopes of the NoCOST and PartCOST, as well as those of some of the other
algorithms, suggest the presence of economies of scale. As the number of hosts in the system
increases, the probability of finding a lightly loaded host increases, and the average response time
can be expected to decrease. This is most obvious for the NoCOST case, where the overhead
costs are not considered. For the more realistic algorithms, the overbead may increase with the
system size, making the increase in system size a mixed blessing. Therefore, the scalability of an
algorithm is an important property. On the other hand, it is interesting to observe that, as the
number of hosts increases beyond 28, the response times improve very little. Therefore, a scala-
bility up to a few tens, or at most a few hundreds of hosts, seems sufficient. Beyond that point, it
makes more sense to implement load balancing using several clusters and perform inter-cluster
load balancing using longer-term load information. This observation further enhances the values
of algorithms such as CENTEX and GLOBAL.

Again, in Figure 6, we obeerve the relative performances of the algorithms. The scalability
of RANDOM, THRHLD and LOWEST is very good. (Their curves are almost parallel to that of
NoCOST.) This is because the aumber of hosts polled by the algorithms when a placement deci-
sion is made is independent of system sise. Comparing GLOBAL and DISTED, we see that the
former scales much better, which may be explained by the overhead analyses in Section 4.1. We
can see two conflicting factors in action by looking at the performance of the DISTED algorithm.
On the one hand, an increase in system size makes it easier to find a host with low load. On the
other hand, the message overhead grows linearly with system size. The composite effect is a
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Figure 6. Average response time with different system sizes.
(normalized against the NoLB case)

moderately rising curve for the normalized response time. CENTRAL remains the worst in all
cases, while CENTEX demonstrates very good performance and satisfactory scalability.

4.3. Effects of Load Balancing on Indlvidual Hosts

In the previous studies of load balancing, it has been frequeatly assumed that the hosts in
the system are subjected to the same level of load [0, 17, 21]. (The job arrival rates and the pro-
cessing rates of all the hosts are the same.) However, this is wsually sot the case in production
environments. It is very interesting to study the eflect of losd balanciag on the iadividual hosts,
especially those originally with light loads. At the beginning of this research, we conjectured that,
while load balancing may improve overall system performance aad that of the heavily loaded
hosts, the lightly loaded ones may suffer degradations in their performance because additional jobs
are transferred to them. We were, therefore, pleasantly surprised by the resuilts from the simula-
tions. The average response times of the individual hosts, with and without load balancing, are
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shown in Figure 7. As can be obeerved, the performances of all hosts are generally improved,
with the hosts under heavy loads showing greater improvements. Figure 7 clearly demonstrates
the power of dynamic load balancing: system performance may be greatly improved by taking
advantage of the temporal differences among the hosts’ loads, and even boets with light ioads
benefit as congestions on them, though infrequent, can be relieved by other hosts.
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Figure 7. Mean response times of individual hosts.
(Utilization without load balaaciag is 63.3%.)

Another beneficial eflect of load balancing revealed by Figure 7 is that it makes the response
times more predictable. For some envirooments, this is even more important than the reduction
in the mean response time. Figure 8 provides a direct measure of this eflect: while the average
response time is cut by a factor of 1.5 to 2.0, its standard devistion is cut by a factor of 2 to 4.
The measurements in Figures 7 and 8 are taken when the system is moderately loaded (the utili-
zation for the NoLB case is 63.3%). The improvements of the meaa and standard deviation of
response time are observed to be more drastic whea the system load level is higher.

The term load balsacing has ia it the implicit mesning of equalising the loads of the partici-
pating hosts. Though this is not our objective, the equalising effect of the algorithms studied in
this paper can be clearly seen in Figures 9 and 10. This is more pronounced with GLOBAL and
DISTED thaa with LOWEST because of the attempt of the former two algorithms at system-wide
optimization. It is interesting to note, in Figures 7 aad 10, that the everage respoase time of all
the jobs originating from & host may decrease while the host's utilization increases. The amount
of overhead introduced by s losd balsaciag algorithm caa be found ia Figure 10 by subtracting
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Figure 8. Standard deviations of response times of individual bosts.
(Utilization without load balancing is 63.3%.)

the average CPU utilization with no load balaacing from that obtained with a specific algorithm.
As can be expected, the overhead of GLOBAL is higher than that of LOWEST, while both pro-
vide similar performance. This is mainly because of the high frequency of load information
exchanges in GLOBAL. The overhead on the LIC in GLOBAL is proportional to the system scale,
and is higher than that on the other hosts. This is reflected by the significant increase in utiliza-
tion of host 1, which we use as the LIC. While this reveals the limitation of the scaling ability of
the algorithm, we do not consider it a serious drawback because our simulation resuits show that
a single LIC is capable of supporting 50-100 hosts under our cost assumptions. At that point, the
economies of scale have almost ao effect, and it is reasomable to implement load balancing in
several clusters.

4.4. Paramaeter Selection and Adaptive Load Balancing

Once the load balancing algorithm is decided, the performance is still seasitive to the specific
parameter values adopted. In this section, we assess the degree of such sensitivity. The adju-
stable parameters depend on the aigorithm. For all of the algorithms, we have 3 jocal losd thres-
bold and 3 job threshold. I addition, for the periodic information policies, we have the load
exchaage period, whereas for the mom-periodic policies, we have the probe limit. Figure 11 shows
the performance of the GLOBAL algorithm under various parameter combinstions. The local
load threshold is set to sero. We can see that the exchange period has a stroag influeace oo the
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Figure 9. Average queue lengths of individual hosts
under different load balancing algorithms.
(Utilization without load balancing is 63.3%.)

performance. When the period is too short (e.g., 0.35 second), the overhead is so high that, even
though the load information on which the transfer decisions are based is very up to date, the per-
formance suffers. On the other hand, if the exchange period is too long (e.g., 10 seconds), the load
information is so out of date that frequent mistakes are made in job placements. (Jobe are sent
to hosts with equal or higher load thaa the local host.)

In contrast, performance seems to be less sepsitive to the job threshold. (The average
response time whes only jobs with CPU execution time greater than 1.0 second are considered for
load balaacing is close to those when jobs above 0.5 or 2.0 seconds are considered.) This observa-
tion supports our earlier claim that oaly as approximste separation betweea big and small jobs is
pecessary to achieve good performance. Lookiag more closely, we again observe a similar pattern
with the job threshold: when the job threshold is too high (e.g., 3 seconds), the fuill poteatial of
load balaacing is not reslized, whereas whea it is too low (e.g., 0.25 second), the overhead of job
transfers outweighs the bemefit, aad performance becomes worse. There is also interaction
betweea the two parameters; when the exchange period is lengthened, the correspondiag optimal
job threshold increases.

It is important to recognize that the combination of parameters that yields the best perfor-
mance is highly dependent on the system load level. Table 1 attempts to illustrate this. Gen-
erally speaking, the higher the load, the higher the job threshold and the longer the exchange




BO=P N e C

- v A Zmmma L a4 —

1 2 8 4 8 6 7 8 91011 12 18 14
Host Number

Figure 10. Utilizations of individual hosts under diflerent load balancing algorithms.

period should be. For LOWEST, an increase in the probing limit may yield poorer performance
when the load is high.

The seasitivity of load balancing performance over the parameter values suggests that some
form of adaptive load balancing may be able to provide good performance when system load
changes widely. Under sdaptive load balancing, the system load is constaatly monitored, and
changes in algorithms and/or adjustable parameters are made as the load changes so that the sys-
tem is always operating at, or close to, the optimal point. Supporting multiple algorithms
involves complicated implementation, and changes in algorithms cannot be made frequently.
Furthermore, for the most promising algorithms, GLOBAL, CENTEX, and LOWEST, the perfor-
maace differentials are quite small. Consequently, the gain from switching algorithms is probably
insignificant, and therefore not worth the eflort. However, we are not making a general statement
here; for enviroaments different from ours, and for algorithms other tham the ones we studied,
using differeat algoritbms under different loads might be quite advantageous.

In contrast to algoritbmic change, parameter adjustments are much simpler, and capable of
significantly improving performance when the system load fluctuates widely. Here, we need LY
system-wide mechanism that mositors load conditions and makes adjustment decisions. GLOBAL
and CENTEX are the most appropriate for this purpose. The LIC periodically receives load iafor-
mation from all the bosts, aad can use such information to deduce the system state. It can then
send to the hosts the parameter values they should use.
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Figure 11. Fffect of Adjustable Parameters on Load Balancing Performance.
(GLOBAL, 14 hosts, utilization without load balancing: 72.3%)

4.5. Avolidance of Instabllity

The problem of instability introduced by load balancing is of major concern to the research-
ers in this field. It is feared that, because of the delay in load information exchanges, several
hosts may transfer jobs to a once lightly loaded host, and cause it to be overloaded. After the
load information is updated, some other host(s) may become the victim(s). We call such
phenomenon of overloading hosts in turn host overloading. Another form of instability is job
thrashing, in which jobs are transferred too many times (or even for an indefinite number of
times, as analytically shown in [9] for RANDOM) in an attempt to find the optimal host for job
execution. Host overloading causes performance degradation because of unstable and uneven load
distribution among the hosts, whereas, for job thrashing, degradation is mainly due to excessive
job transfer overhead. Since we are mostly concerned with algorithms that traasfer jobs only
once, we wilf study the host overloading problem here.

We consider a job transfer wrong if the destination host's CPU queue length is equal to or
greater than that of the originating host. There is a distinction between tramsferring a job
wrongly and collectively overloading a host; the former by itsell will only increase the particular
job's respoase time, whereas the latter will potentially cause system-wide performance degrads-
tion, due to the aggravated effects of the individual wrong trassfers. This problem can be serious
because usually the transferred jobs are big. In order to quantitstively measure the level of host
overloading occurring in » system, we define the host overloading factor T to be the percentage of
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Table 1. Optimal Parameter Values under Different System Load Levels (28 hosts).

Utilization (%) | 481 | 562 | 633 | 723 | 791 | 8.1 | 921
GLOBAL

Load Exch Pd 0.5 0.5 0.75 1.0 15 2.0 3.0

Job Thrd 0.4 0.5 0.5 0.75 1.0 L5 2.0
DISTED

Load Exch Pd 15 2.0 25 3.0 40 5.0 75

Job Thrd 0.4 0.5 0.75 1.0 1.5 2.0 2.5
LOWEST

Job Thrd 0.4 0.5 1.0 1.0 1.5 2.5 40

Load Thrd 0 0 0 0 0 0 0

(The numbers are approximate, as only s sparsely allocated set of operating points in the multi-dimensional parameter
space are tested for each algorithm.)

wrong job transfers over all transfers:
7= Jamber ol wren ronc/es oo

There are a number of factors that aflect the level of host overloading, all baving something
to do with the rate at which wrong transfers are made to a host because T is roughly proportional
to this rate. First, the staleness of load information bas a deciding effect. The staler the informa-
tion, the more the jobs that are transferred wrongly. Therefore, the non-periodic information pol-
icies that collect load information on demand are less susceptible to host overloading than the
periodic policies. Another important factor is the rate at which jobs that are candidates for
transfer arrive. This depends on the system load level and the job threshold. The higher the load
and the lower the job threshold, the larger the percentage of eligible jobs. To verify our intuitive
argument, we calculated 7 in simulation experiments for the GLOBAL algorithm using various
load exchange periods aad job thresholds. Since it is difficult to consider three factors all chang-
ing at the same time, we fixed the system load level at 79%. Such a system-wide utilization is
high, sad host overioading may be expected to be quite serious. The results are shown in Figure
12, and agree with our intuition. It seems that bost overloading does not have as disastrous
effects on system performance as we feared: very good performance can be achieved even when
there exists light overloading (7 < 10%).

Besides load update frequency and job threshold, the system scale also aflects host overload-
ing, but to a lesser degree. It is important to know the pumber of hosts with the least load. For
the algorithms studied in this paper, placement decisions are based on the instantaneous CPU
queue lengths of the hosts. Since there may be more than one host with the same shortest queue
length, the transferred workioad may be shared by them, thus reducing overloading. A larger
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Figure 12. Percentage of wrong job placements for GLOBAL under
various load exchange periods and job threshoids.
(Number of hosts: 14, Average utilization: 79%)

system size makes such situation more probable. On the other hand, in a larger system, there are
also more sources of transferred jobs. To quantitatively study the number of hosts with the least
load as 3 function of system size and load update period, we recorded the load vector at a high
frequency during a simulation experiment for GLOBAL, and counted the number of hosts with the
least number of jobs at their CPU's. The actual shortest queune length is unimportant because we
are only concerned with the relative distribution here. Figure 13 shows the distributions for sys-
tems with 14 and 28 hosts, and the exchange period fixed at 5 seconds. For shorter exchange
periods, the means of the number of hosts with the least load are slightly lower. We find that the
probability of having only one or two bosts with the least load is non-negligible; hence host over-
loading can occur, as revealed using another metric in Figure 12. Consider the following case,
which was found to be typical: for s system with 14 bosts and a load level of 80%, the total rate
at which jobs are transferred by the GLOBAL algorithm using a job threshold of 1.0 second is 1-2
jobs/second. This means that, if we update load information every 5 seconds, 5-10 jobs may be
transferred to the single bost that used to have the least load! This range is reduced to 1-2 jobs if
the exchange period is 1.0 second, and even lower if the system load is not at such a high level.
Hence, we see that whether host overloading occurs depends primarily on the system load and the
load exchange period.
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4.¢. Immoblile Jobe

Throughout our studies so far, we have assumed that the jobs are mobile, that is, they can
be executed on any host in the system with exactly the same results. Although this assumption
bolds for a large subset of the jobs, we do observe that some of the jobs are immobile. Examples
include jobs that perform local services and/or require local resources, such as system daemons,
login sessions, mail and message handling programs, and so on. There are also highly interactive
jobs, such as command interpreters and editors, for which remote execution will result in poor per-
formance due to network latencies. Any implementation of load balancing must take the eflects
of these immobile jobs into consideration. We define the immobility factor to be the percentage
of jobs that have to be executed on the local host, but are otherwise eligible for load balancing.
By varying the value of the immobility factor, the eflect of immobile jobs is revealed. For a sys-
tem of 28 hosts with an average CPU utilization of 63.7%, the results are shown in Figure 14.

The concave shapes of the curves are encouraging, as they indicate that effective load
balancing is still possible even if » significant proportion of the jobs are immobile. For an immo-
bility factor of 0.4, the mean response time is only slightly higher than that for the case in which
all jobs are mobile (the immobility factor being 0). This observation is not surprising because
load balancing is achieved by only transferring a portion of the eligible jobs. (Typically, 50-70%
of the eligible jobs were actually transferred in the simulation experiments.) Consequently, even
though some of the eligible jobs are immobile, the rest of them can still produce most of the
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Figure 14. Effect of immobile jobs.

performance benefits due to the balancing effect.

5. Conclusions

In this paper, we studied the load balancing problem using simulation models driven by job
traces collected from a production system. We simulated a CPU scheduling policy that is believed
to be representative, and we considered explicitly the costs of load information exchange and job
transfers. Because of the generality of the model and the use of live system data, the results of
our simulation are believed to be more reliable than those from analytic models or simulations
driven by probability distributions. On the other hand, our results might be biased towards a par-
ticular type of computing environment.

Seven load balancing algorithms were studied, including both ones using periodic information
policies and ones using non-periodic policies. We found that load balancing using any reasonable
algorithm can provide substaatial performance improvement over the NoLB case. Specifically, the
average response time of all the jobs may be reduced by 30-60%, and the reduction in its stan-
dard deviation is even more drastic, making the job response times much more predictable than in
the NoLB case. The higher the load, the greater the improvement, and longer jobs benefit more
from load balancing. Looking more closely, we found that the performance of all hosts, even
those originally with light loads, improve under eflective load balancing. This is somewhat
counter intuitive, but very encouraging: by cooperating with each other, no one loses. We aiso
observed a strong tendency of load balancing to equalize the loads of the individual hosts; both
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the utilizations and the average CPU queue lengths of the bosts cluster within a small range.

By varying the size of the system, we observed significant but limited economies of scale.
For example, when four systems each with 7 hosts, or two systems each with 14 hosts, are com-
bined into a single system of 28 hosts, the average respoase time is significantly reduced for the
algorithms with good scalability. However, beyond 28 hosts, the improvement diminishes quickly.
Consequently, a scalability of am algorithm up to 50-100 hosts seems to be sufficient, aad cluster-
ing techniques should be used in Iarge scale systems to avoid the potentially increasing overhead
and the management complexities.

For the periodic load information policies, we found that the giobal approach bas much less
overhead than the distributed approach, and, therefore, performs better and is more scalable. The
periodic and non-periodic policies provide comparable performances under our cost assumptions.
The algorithms that collect load information on demand (RANDOM, THRHLD and LOWEST)
have the advantages of lower message exchange overhead, of being able to scale better, and of
being less susceptible to host overloading. On the other hand, the algorithms that rely on periodic
load exchanges (GLOBAL, CENTEX, and DISTED) bave the advantages of being able to poten-
tially chooee the optimal hosts for job transfers, thus offering better performance, and of not sub-
jecting the jobs eligible for transfer to the delays in getting load information.

The performance of load balancing using the algorithms studied in this paper is found to be
quite sensitive to the values of the local load threshold, load exchange period, and host probing
limit. The combinations of the parameter values that provide optimal performances are in turn
dependent on the system load level. Consequently, adaptive load balancing has the promising
potential of maintaining optimal performance under changing system cosfiguration and load. The
GLOBAL aad CENTEX algorithms are the most appropriate for this because of the presence of
the LIC. More research is called for in this area.

Hoet overloading is aot significaat for non-periodic algorithms, but may be serious with the
periodic algorithms. The deciding factors are the load update frequency, the system load, the job
threshold, and the system size. By using reasomably ap-to-date load information and only
transferring a small percentage of jobs, host overloadiag caa be eflectively alleviated. Suboptimal
placement decisions may produce better performance than “‘optimal” decisions, because overload-
ing on one or a small aumber of hosts may thus be avoided. Host overioading is not as serious as
we expected — very good performance can be achieved even when it occurs occasionally.

The impact of immobile jobs on load balsncing is found to be less serious thaa the immobil-
ity factor might suggest: most of the performance gains are still retained eves whes up to 50% of
the jobs are immobile.

We bhave been very much encouraged by the trace-drivea simulation approach takes in this
research; it proves to be capable of baadling greater complexities aad of providing more credible
performance results thaa the approsches used before in load balasciag research. Oa the other
baad, we only used data from a particuilar type of time-sharing esvironmesnt, aad 90 the generality
of our results is limited. The simplifying assumptions made in this research, though less unrealis-
tic than those of the previous studies, may also have introduced errors in our resuits. It would be
very interesting to apply the techniques used in this research to other types of computing eaviron-
ments, especially server-based workstation esviroamesnts, aad to compare the fndings. Such
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eflorts are curreatly being planned.

In view of the proliferation of distributed systems, and of the great potential of load balanc-
ing as demonstrated in this research and by other suthors, it is highly desirable that load balanc-
ing be made a standard service in future distributed systems to substantially increase the perfor-
mance of the system without adding any resources. Unfortunately, only a few implementations
exist, and most of them were done in an ad hoc fashion |2, 13, 14, 20|. Besides the implementa-
tion difficulties involved, a general lack of understanding of the performance characteristics of the
algorithms proposed and the engineering tradeoffs involved are the major obstacles. Trace-driven
simulation appears to be an appropriate tool for load balancing studies, and should be well
exploited before an implementation eflort starts, because the latter is much more costly.
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